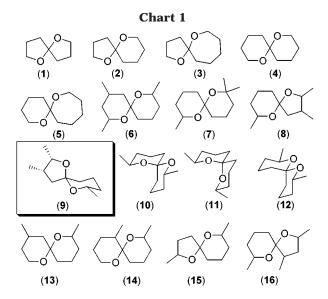
Synthesis and Absolute Stereochemistry of a Constitutionally New Spiroacetal from an Insect

Patricia Hayes,† Mary T. Fletcher,† Christopher J. Moore,[‡] and William Kitching*,[†]

Department of Chemistry, The University of Queensland, Brisbane, Queensland 4072, Australia, and Department of Primary Industries, Yeerongpilly, Queensland 4105, Australia

kitching@chemistry.uq.edu.au


Received January 4, 2001

A group of about 30 constitutionally different spiroacetal structures have been characterized from insects1 and represent five spiroacetal systems: 1,6-dioxaspiro-[4.4]nonane, 1,6-dioxaspiro[4.5]decane, 1,6-dioxaspiro-[4.6]decane, 1,7-dioxaspiro[5.5]undecane, and 1,7-dioxaspiro[5.6]decane, compounds 1-5 (Chart 1).

The characterized spiroacetals are very predominantly odd-numbered in carbon, 1,2 and only two, 63 and 7,4 have branched carbon skeletons.

Recently we suggested⁵ that an isomer of 2,3,7-trimethyl-1,6-dioxaspiro[4.5]decane (8) was a likely component of the dorsal abdominal gland secretion of the aposematic shield bug, Cantao parentum (White) (Hemiptera: Scutelleridae), on the basis of some mass spectral and chromatographic comparisons. We now wish to describe studies that confirm the occurrence of this unprecedented spiroacetal system (8) and the (2S,3S,-5R,7S) stereochemistry, as in (9). This completes the identification of the structurally and stereochemically most diverse suite of spiroacetals from an insect species.^{1,2} This component (B)⁶ (M = 184) was initially assumed to be the (E,Z)-diastereomer of 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (10), which often accompanies the (E,E)-diastereomer (11), component A, in insects, 1,2 but retention time comparisons with the authentic (E,Z), (E,E), and (Z,Z) diastereomers $10-12^7$ disproved this. Arguments and data presented elsewhere⁵ ruled out isomers of the 2,10- (13) or 2,11-dimethyldioxaspiro[5.5]undecane (14) as possible structures, with the former being an 8-des-methyl relative of the thoroughly characterized system (6).3 Other structures, of various ring sizes and methyl dispositions (with M = 184), were confidently eliminated.8

[‡] Department of Primary Industries.

Detailed scrutiny of very low-level components with shorter retention times than (B) led to the identification of an isomer of 2,7-dimethyl-1,6-dioxaspiro[4.5]decane (M = 170) (15) by comparisons with an authentic sample. Mass spectral comparisons of **15** with unknown component *B* indicated that *B* could be an isomer of either the 2,3,7- or 2,4,7-trimethyl-1,6-dioxaspiro[4.5]decane systems (8) and (16), respectively, both uncharacterized from natural sources.

The synthetic approach to these spiroacetals was based on addition of the anion of hydroxyl-protected 4-pentyn-2-ol (17) to appropriate^{4,10} lactones 18–20. Initially, a mixture of four isomers of the 2,4,7-trimethylspiro system **16** was synthesized in this way^{11,12} (Scheme 1). Careful flash chromatography (silica, petroleum ether) provided the isomers (16a-d). These were of sufficient isomeric purity to permit ¹H and ¹³C NMR analyses (including NOE experiments), which established the relative stereochemistry. Isomer 16d coeluted with natural component B from two different GC columns, one of which had a β -cyclodextrin phase. Furthermore, the EIMS of both matched very well, except for a difference in the relative intensity of one ion (m/z 73).

This discrepancy encouraged the synthesis of spiro system 8, initially as a stereoisomeric mixture, and one of the isomers matched B precisely, with respect to both coelution and mass spectra. Thus, trans-13 and cislactones¹⁴ **19** and **20**, along with an approximately 50:50

[†] The University of Queensland.

⁽¹⁾ Francke, W.; Kitching, W. Curr. Org. Chem. **2000**, 41, 411. (2) Fletcher, M. T.; Kitching, W. Chem. Rev. **1995**, 95, 789.

^{(3) (}a)Moore, C. J.; Hübener, A.; Tu, Y. Q.; Kitching, W.; Aldrich, J. R.; Waite, G. K.; Schulz, S.; Francke, W. *J. Org. Chem.* **1994**, *59*, 6136. (b) Tu, Y. Q.; Moore, C. J.; Kitching, W. Tetrahedron: Asymmetry 1995,

⁽⁴⁾ Zhang, H.; Fletcher, M. T.; Dettner, K.; Francke, W.; Kitching W. Tetrahedron Lett. 1999, 40, 7851

⁽⁵⁾ Tu, Y. Q.; Hübener, A.; Zhang, H.; Moore, C. J.; Fletcher, M. T.; Hayes, P.; Dettner, K.; Francke, W.; McErlean, C. S. P.; Kitching, W. Synthesis 2000, 1956-1978.

⁽⁶⁾ For a gas-chromatographic trace of the insect secretion depicting

components A—H, see ref 5.
(7) Kitching, W.; Lewis, J. A.; Perkins, M. V.; Drew, R. A. I.; Moore, C. J.; Schurig, V.; König, W. A.; Francke, W. *J. Org. Chem.* **1989**, *54*, 3893.

⁽⁸⁾ Schulz, S.; Francke, W. Unpublished results. Schulz, S. Diplomarbeit, University of Hamburg, 1982.

⁽⁹⁾ From the collection of spiroacetals described by Rilatt and Lawson. Rilatt, J. A. Ph.D. Dissertation, University of Queensland, 1987. Lawson, E. N. Ph.D. Dissertation, University of Queensland,

^{(10) (}a) Phillips, S. C.; Jacobson, R.; Abrahams, B.; Williams, H. J.; Smith, L. R. *J. Org. Chem.* **1980**, *45*, 1920. (b) Jacobson, R.; Taylor, R. J.; Williams, H. J.; Smith, L. R. *J. Org. Chem.* **1982**, *47*, 3140.

⁽¹¹⁾ For the synthesis of the (racemic) tetrahydropyranyl ether of 4-pentyn-2-ol (17), see: (a) Bestmann, H. J.; Schobert, R. *Synthesis* **1989**, *6*, 419. (b) White, J. D.; Somers, T. C.; Reddy, G. N. *J. Org. Chem.* 1992, 57, 4991. (c) Alvarez, A.; Lera, A. R. Tetrahedron: Asymmetry **1998**, *9*, 3065.

⁽¹²⁾ For the synthesis of the lactone 3,5-dimethyl-dihydrofuran-2-one (18), see: (a) Hullett, P.; Curigny, T.; Larchevêque, M.; Normant, H. Can. J. Chem. 1977, 55, 266. (b) Shum, T. J.; Marolewski, A. E.; Rezeuka, D. S.; Taylor, S. K. J. Org. Chem. 1989, 54, 2039.

Scheme 1

Me₃Si = (i) "BuLi - HMPA (61%) Me₃Si HO

(ii) DCM (61%) HO

TSOH, 60% (17) THPO (88%) OH

(iii) "Bu₄NF, THF (iii) O (71%) OH

Monoglyme,
$$\Delta$$
(82%) (18)

(i) MeLi, ether (17)

THPO (17) 20°C, 3h

(i) H₂, Pd-C (40psi) (4 isomers) (19% from lactone) (16a) (16b) (16c) (16d)

mixture of each, were acquired as summarized in Scheme 2. Deprotonation of the protected 4-pentyn-2-ol (17) and addition to trans-lactone 19, and also to the cis-translactone mixture, afforded spiroacetals of system 8. The pure trans-lactone 19 provided comparable amounts of spiroacetals 21 and 22 (together about 98%) and two minor isomers (\sim 2%), on the basis of GC-MS data. These minor isomers are probably epimers of 21 and 22 with the C_5-O_1 bond *equatorial*. The major isomers **21** and 22 were readily separated by flash chromatography and individually characterized. Lactone mixture 19 and 20 provided 21 and 22, together with the additional spiroacetals **23** and **24**, 15 from the *cis*-lactone component **20**. The major isomers from each lactone were assigned as the anomerically stabilized ones. These outcomes are summarized in Scheme 2.

Co-injection studies, with a β -cyclodextrin column, showed that the natural isomer incorporated *cis-vic*-methyl groups and corresponded to a single enantiomer of one of the diastereomers **23** or **24**. Of these two, only **24** would be anticipated to exhibit NOE effects between H10_{eq} and either of the C₂ and C₃ methyl groups, depending on the conformations. This conclusion could be supported by the observation of NOEs to the methyl groups from H10_{eq} in each of the (separated) spiroacetals **21** and **22** that are derived from the *trans*-lactone.

An enantioselective synthesis of stereoisomer 9 was developed that was based on (2S,3S)-2,3-epoxybutane (26), acquired from diethyl (2R,3R)-tartrate (25), as described by Mori and Tamada.15 Epoxide 26 was converted to the (3S,4S)-lactone 27 with malonate ion as outlined in Scheme 2 for the racemates. Addition of the anion from THP-protected (2S)-4-pentyn-2-ol (28) to this lactone followed by reduction and cyclization afforded essentially a single isomer ($[\alpha]^{22}_D$ –16.5 (c 0.4, acetone)) assigned as **9** with the (2S,3S,5R,7S) configuration. The ee was >99% by enantioselective gas chromatography. A strong NOE was detected between the C-3 methyl group and H-10eq, consistent with 9 but inconsistent with the C-5 epimer, wherein the C_5-O_1 bond is *equato*rial. This and other observed NOEs are shown in Scheme 3. Comparisons of enantioselective gas chromatographic and mass spectral behavior and co-injection studies demonstrated that $\mathbf{9}$ was the natural component B.

This aposematic shield bug, *Cantao parentum* (White), has remarkable biosynthetic capability as evidenced by its production of the spiroacetals shown in Chart 2. These are listed in gas chromatographic elution order⁶ and possess the indicated absolute stereochemistry.^{3,5} This suite encompasses spiroacetals both odd- and evennumbered in carbon, of both linear and branched carbon skeletons and illustrating both the 1,7-dioxaspiro[5.5]-undecane and 1,6-dioxaspiro[4.5]decane systems.

^{(13) (}a) Ainsworth, P. J.; Graig, D.; Reader, J. C.; Alexandra, M. Z.; Andrew, J. P.; Williams, D. J. *Tetrahedron* **1995**, *51*, 11601. (b) Reissig, H.-U.; Augert, H.; Kunz, T.; Janowitz, A.; Handke, G.; Bruce-Adjei, E. *J. Org. Chem.* **1993**, *58*, 6280.

J. Org. Chem. **1993**, *30*, 0260. (14) (a) Byström, S.; Högberg, H.-E.; Norin, T. *Tetrahedron* **1981**, *37*, 2249. (b) Hedonström, E.; Högberg, H.-E.; Wassgron, A.-B.; Bergström, G.; Löfquist, J.; Hanson, B.; Auderbrant, O. *Tetrahedron* **1992**, *48*, 3139. (c) Peterson, T.; Eklund, A.-M.; Wahlberg, I. *J. Agric. Food Chem.* **1993**, *41*(11), 2097–2103.

⁽¹⁵⁾ Mori, K.; Tamada, S. Tetrahedron 1979, 35, 1279.

Scheme 3

Experiments are being planned to establish the likely pathways to these diverse spiroacetal systems. 16

Experimental Section

General Methods. ¹H NMR spectra were recorded at 400 MHz with either TMS ($\delta=0$) or the signal for residual CHCl₃ in the CDCl₃ solvent (δ 7.24), or the signal of benzene in the C₆D₆ solvent (δ 7.15) as internal standards. ¹³C NMR spectra were recorded at 100 MHz with either TMS ($\delta=0$) or the central peak of the CDCl₃ triplet (δ 77.00 ppm, CDCl₃), or the multiplet of benzene (δ 128.00 ppm). J values are reported in Hz. Flash chromatography was performed with Kiesel S (0.032–0.063 mm). Enantioselective gas chromatography was conducted using a permethylated β -cyclodextrin column (SGE, 50 m, 0.25 μ m).

2,4,7-Trimethyl-1,6-dioxaspiro[4.5]decanes (16a-d). Following the procedure of Williams and Smith, ¹⁰ MeLi (3.2 mmol) was added dropwise but rapidly with good stirring to a cooled solution (0 °C) of THP-protected 4-pentyn-2-ol (**17**) (3.2 mmol) in dry ether (10 mL) under an inert atmosphere. After 5 min, this solution was added to a solution of lactone **18**¹² (3.3 mmol) in dry ether (10 mL), and the resulting mixture was stirred at room temperature for 3 h. A 20% aqueous solution of NH₄Cl (5 mL) was added, and stirring was continued until all the precipitate had dissolved. The organic layer was separated, washed with 1 M aqueous NaHCO₃, dried (MgSO₄), and evapo-

rated to give an oil. The crude oil was dissolved in MeOH (20 mL) and hydrogenated over 10% Pd/C (71 mg) at 40 psi for 2 h. Then, the mixture was filtered on Celite, and 2 drops of concentrated sulfuric acid were added. The mixture was stirred at room temperature overnight. Water (10 mL) was added and the mixture extracted with petroleum ether (3 \times 20 mL). The organic layer was dried (MgSO₄) and concentrated. Spiroacetals 16a-d so obtained were purified and separated on a silica column (1% ether in petroleum ether) in 19% yield.

Spiroacetal **16a**: ^{1}H NMR (CDCl₃) δ 0.94 (d, J 6.5, CH₃(4)), 1.04 (d, J 6.3, CH₃(7)), 1.09 (dddd, J 13.0, 13.0, 12.2. 4.0, H_{8ax}), 1.16 (d, J 6.4, CH₃(2)), 1.42 (dddd, J 13.1, 4.5, 1.8, 1.8, H_{10eq}), 1.51–1.58 (m, H₃), 1.52 (dm, J 13.0, H_{8eq}), 1.55 (dd, J 13.4, 12.4, H_{10ax}), 1.60 (dm, J 12.6, H_{9eq}), 1.80–1.84 (dm, J 12.6, H_{9ax}), 1.80–1.87 (m, H₄), 1.80–1.90 (m, H₃), 3.82 (dqd, J 12.6, 6.3, 2.2, H₇), 4.11 (dqd, J 14.4, 8.2, 6.4, H₂); ^{13}C NMR (CDCl₃) δ 12.7 (CH₃-(4)), 20.4 (C₉), 21.8(CH₃(7)), 23.7 (CH₃(2)), 31.0 (C₁₀), 32.9 (C₈), 39.0 (C₃), 41.9 (C₄), 65.5 (C₇), 71.5 (C₂), 105.6 (C₅); MS (m/z) 184 (M*+, 1.5), 169 (3.2), 140 (12.6), 125 (21.0), 115 (100), 112 (48.7), 97 (28.0), 73 (7.5), 69 (40.7), 55 (58.0), 43 (69.6), 41 (73.0); HRMS (ES, 70 eV) calcd for C₁₁H₂₁O₂ (M + 1) 185.153606, found 185.153282.

Spiroacetal **16b**: ¹H NMR (CDCl₃) δ 0.96 (d, J 6.8, CH₃(4)), 1.04 (d, J 6.2 (CH₃(7)), 1.09 (ddd, J 11.0, 4.0, 1.8, H_{8eq}), 1.22 (d, J 6.2, CH₃(2)), 1.42 (ddd, J 13.0.13.0, 4.5, H_{10ax}), 1.47 (ddd, J 11.6, 8.8, 8.8, H₃), 1.48–1.55 (m, H_{8ax}), 1.54 (ddd, J 13.8, 12.9, 4.8, H_{10eq}), 1.62 (dm, J 13.5, H_{9eq}), 1.79 (ddddd, J 13.5, 13.3, 13.3, 4.0, 4.0, H_{9ax}), 1.83 (dqd, J 8.8, 7.0, 6.8, H₄), 2.06 (ddd, J 11.7, 7.0, 7.0, H₃), 3.91 (dqd, J 12.6, 6.3, 2.2, H₇), 4.11 (dqd, J 14.0, 8.8, 6.2, H₇); ¹³C NMR (CDCl₃) δ 12.7 (CH₃(4)), 20.4 (C₉), 21.8 (CH₃(7)), 23.7 (CH₃(2)), 31.0 (C₁₀), 32.9 (C₈), 39.8 (C₃), 44.2 (C₄), 65.4 (C₇), 74.1 (C₂), 105.1 (C₅).

Spiroacetal **16c**. NMR resonances subtracted from a mixture of **16c** and **16d**, and some resonances were obscured: 1H NMR (CDCl₃) δ 0.91 (d, J 7.2, CH₃(4)), 1.08 (d, J 6.4, CH₃(7)), 1.23 (d, J 6.2, CH₃(2)), 2.36 (ddd, J 12.2, 8.4, 7.2, H₃), 3.85 (dqd, J 12.6, 6.2, 2.1, H₇), 4.04 (dqd, J 13.4, 7.2, 6.2, H₂); 13 C NMR (CDCl₃) δ 17.5 (CH₃(4)), 20.2 (C₉), 21.7 (CH₃(7)), 22.1 (CH₃(2)), 29.7 (C₁₀), 32.9 (C₈), 40.9 (C₃), 43.1 (C₄), 66.2 (C₇), 71.8 (C₂), 107.7 (C₅).

Spiroacetal **16d**: ¹H NMR (CDCl₃) δ 0.88 (d, J 7.2, CH₃(4)), 1.07 (d, J 6.3, CH₃(7)), 1.08–1.14 (m, H_{8ax}), 1.14 (dddd, J 13.1, 13.1, 11.4, 4.2, H_{8eq}), 1.23 (d, J 6.2, CH₃(2)), 1.42 (ddd, J 13.0, 13.0, 4.5, H_{10ax}), 1.54 (dd, J 12.9, 4.4, H_{10eq}), 1.61–1.69 (m, H_{9eq}), 1.63 (ddd, J 11.8, 6.9, 1.1, H₃), 1.76 (ddddd, J 13.7, 13.5, 13.3, 4.4, 4.1, H_{9ax}), 2.02 (ddd, J 11.8, 8.4, 7.2, H₃), 2.12 (dq, J 7.2, 7.2, H₄), 3.96 (dqd, J 12.7, 6.3, 2.2, H₇), 4.30 (dqd, J 14.7, 8.4, 6.2, H₂); ¹³C NMR (CDCl₃) δ 15.7 (CH₃(4)), 20.3 (C₉), 21.9 (CH₃(7)), 23.6 (CH₃(2)), 29.6 (C₁₀), 32.8 (C₈), 39.6 (C₃), 43.7 (C₄), 65.8 (C₇), 74.6 (C₂), 107.9 (C₅).

(2*S*,3*S*)-2,3-Epoxybutane (26). Following a published procedure, ¹⁵ 26 was prepared in seven steps from diethyl (2*R*,3*R*)-tartrate (25) in 10% overall yield. NMR data were identical with whose listed by Mori: ¹⁵ $[\alpha]_D$ –54.7 (*c* 0.4, ether) (lit. ¹⁵ –61.7 (*c* 2.1, ether)).

(3*S*,4*S*)-Lactone 27. Following the Byström procedure, ¹⁴ 27 was prepared from epoxide 26 in 30% yield. NMR data were identical with those described by Byström. ¹⁴ $[\alpha]_D$ –53.4 (*c* 1.1, CHCl₃) (lit. ^{14c} + 54.1 (*c* 0.7, CHCl₃) for the (3*R*,4*R*)-isomer).

2,3,7-Trimethyl-1,6-dioxaspiro[4.5]decanes (9, 21–24). The procedure employed for the acquisition of **16a–d** was applied. Spiroacetals **9** and **21–24** were obtained in 19–23% yield from lactones **19, 20,** or **27**.

Spiroacetal **21**: 1H NMR (C_6D_6) δ 0.77 (d, 3H, J 6.5, $CH_3(3)$), 1.10-1.17 (m, H_{8ax}), 1.15 (d, J 6.3, $CH_3(7)$), 1.26 (dd, 1H, J 11.3, 11.3, H_4), 1.27 (d, 3H, J 6.1, $CH_3(2)$), 1.38-1.44 (dm, 1H, J 11.4, H_{8eq}), 1.52 (dm, 1H, J 12.2, H_{9ax}), 1.52-1.59 (m, 2H, H_{10ax} and H_{10eq}), 1.99-2.06 (m,1H, H_{9eq}), 2.10 (dd, 1H, J 11.6, 6.8, H_4), 2.13-2.22 (m, 1H, H_3), 3.6 (dq, 1H, J 8.0, 6.1, H_2), 4.13 (dqd, 1H, J 12.6, 6.3, 2.3, H_7); ^{13}C NMR (C_6D_6) δ 16.7 ($CH_3(3)$), 20.8 (C9), 21.4 ($CH_3(2)$), 22.3($CH_3(7)$), 33.2 (C8), 34.1 (C10), 39.7 (C3), 48.2 (C4), 66.2 (C7), 83.1 (C2), 105.4 (C5); HRMS (ES, 70 eV) calcd for $C_{11}H_{21}O_2$ (M + 1) 185.153606, found 185.153434.

Spiroacetal **22**: 1 H NMR ($C_{6}D_{6}$) δ 0.88 (d,1H, J 6.7, CH $_{3}$ (3)), 1.08–1.14 (m, 1H, H_{8ax}), 1.15 (d, 3H, J 6.2, CH $_{3}$ (7)), 1.19 (d, 3H, J 6.0, CH $_{3}$ (2)), 1.36–1.41 (dm, 1H, J 12.8, H_{8eq}), 1.45–1.53 (m, 1H, H_{9ax}), 1.49–1.57 (m, 1H, H_{3}), 1.54 (dd, 1H, J 12.9, 4.4, H_{10eq}), 1.62–1.67 (dm, 1H, J 12.9, H_{10ax}), 1.74 (dd, 1H, J 12.9, 7.7, H_{4}),

⁽¹⁶⁾ See: (a) Hungerford, N. L.; Mazomenos, B.; Haniotakis, G.; Moore, C. J.; Fletcher, M. T.; Hübener, A.; DeVoss, J. J.; Kitching, W. J. Chem. Soc., Chem. Commun. 1998, 863. (b) Stok, J. E.; Lang, C.-H.; Schwartz, B. D.; Fletcher, M. T.; Kitching, W.; DeVoss, J. J. Org. Lett. 2001, 3(3), 397–400.

1.92 (dd, 1H, J 12.9, 9.7, H₄), 2.01 (ddd, 1H, J 13.3, 4.2, 3.8, H_{9eq}), 3.76 (dq, 1H, J 8.5, 6.1, H₂), 4.09 (dqd, 1H, J 13.7, 6.2, 2.4, H₇); ¹³C NMR (C₆D₆) δ 17.2 (CH₃(3)), 19.2 (CH₃(7)), 20.6 (C9), 22.5 (CH₃(2)), 31.8 (C8), 34.9 (C10), 40.9 (C3), 47.9 (C4), 66.7 (C7), 80.4 (C2), 105.4 (C5).

Spiroacetal **23**. NMR resonances for **23** were extracted from the spectra of a mixture of the four isomers, and some resonances were obscured: 1H NMR (C_6D_6) δ 0.71 (d,1H, J6.5, $CH_3(3)$), 1.17 (d, 3H, J6.2, $CH_3(2)$), 1.18 (d, 3H, J6.2, $CH_3(7)$), 3.69 (dq, 1H, J8.8, 6.2, H_7), 4.08 (dq, 1H, J6.5, 6.5, H_2); ^{13}C NMR (C_6D_6) δ 20.6 (C9), 33.0 (C8), 35.3 (C10), 40.2 (C3), 47.9 (C4), 67.0 (C7), 78.8 (C2), 104.8 (C5).

Spiroacetal **24**. NMR data were identical with those described for spiroacetal **9**.

Spiroacetal 9: 1 H NMR (400 MHz, $C_{6}D_{6}$) δ 0.72 (d,1H, J7.0, CH₃(3)), 1.05 (d, 3H, J6.5, CH₃(2)), 1.11 (dddd, 1H, J12.8, 12.3, 12.3, 4.0, H_{8ax}), 1.16 (d, 3H, J, 6.3, CH₃(7)), 1.30 (dd, 1H, J12.4,

6.2, H₄), 1.40 (dm, 1H, J12.8, H_{8eq}), 1.46–1.54 (dm, 1H, J12.6, H₉), 1.59 (dd, 1H, J11.8, 4.0, H₁₀), 1.59 (ddd, 1H, J11.8, 4.0, 1.2, H₁₀), 1.67–2.07 (m, 1H, H₉), 2.21 (dd, 1H, J12.4, 7.8, H₄), 2.28 (m, 1H, J7.0, H₃), 4.09 (dqd, 1H, J11.3, 6.2, 2.3, H₇), 4.27 (dq, 1H, J6.5, 6.5, H₂); 13 C NMR (100 MHz, C₆D₆) δ 15.2 (CH₃-(3)), 16.2 (CH₃(2)), 20.8 (C9), 22.4 (CH₃(7)), 33.1 (C8), 34.8 (C3), 35.1 (C10), 47.5 (C4), 66.5 (C7), 76.1 (C2), 104.8 (C5); MS (m/z) 184 (M*+, 6.0), 169 (1.9), 140 (33.3), 125 (56.7), 115 (100), 112 (56.4), 97 (55.8), 73 (48.7), 69 (49.0), 55 (57.8), 43 (55.8), 41 (51.8); $[\alpha]_D$ –16.5 (c 0.4, acetone).

Supporting Information Available: Copies of ¹H and ¹³C NMR spectra for spiroacetals **16a**–**d**, spiroacetal **9**, and spiroacetals **21** and **22**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO015502P